Skip to main content
New in version: 2.13.0 FastMCP uses pluggable storage backends for caching responses and managing OAuth state. By default, all storage is in-memory, which is perfect for development but doesn’t persist across restarts. FastMCP includes support for multiple storage backends, and you can easily extend it with custom implementations.
The storage layer is powered by py-key-value-aio, an async key-value library maintained by a core FastMCP maintainer. This library provides a unified interface for multiple backends, making it easy to swap implementations based on your deployment needs.

Available Backends

In-Memory Storage

Best for: Development, testing, single-process deployments In-memory storage is the default for all FastMCP storage needs. It’s fast, requires no setup, and is perfect for getting started.
from key_value.aio.stores.memory import MemoryStore

# Used by default - no configuration needed
# But you can also be explicit:
cache_store = MemoryStore()
Characteristics:
  • ✅ No setup required
  • ✅ Very fast
  • ❌ Data lost on restart
  • ❌ Not suitable for multi-process deployments

Disk Storage

Best for: Single-server production deployments, persistent caching Disk storage persists data to the filesystem, allowing it to survive server restarts.
from key_value.aio.stores.disk import DiskStore
from fastmcp.server.middleware.caching import ResponseCachingMiddleware

# Persistent response cache
middleware = ResponseCachingMiddleware(
    cache_storage=DiskStore(directory="/var/cache/fastmcp")
)
Or with OAuth token storage:
from fastmcp.server.auth.providers.github import GitHubProvider
from key_value.aio.stores.disk import DiskStore

auth = GitHubProvider(
    client_id="your-id",
    client_secret="your-secret",
    base_url="https://your-server.com",
    client_storage=DiskStore(directory="/var/lib/fastmcp/oauth")
)
Characteristics:
  • ✅ Data persists across restarts
  • ✅ Good performance for moderate load
  • ❌ Not suitable for distributed deployments
  • ❌ Filesystem access required

Redis

Best for: Distributed production deployments, shared caching across multiple servers
Redis support requires an optional dependency: pip install 'py-key-value-aio[redis]'
Redis provides distributed caching and state management, ideal for production deployments with multiple server instances.
from key_value.aio.stores.redis import RedisStore
from fastmcp.server.middleware.caching import ResponseCachingMiddleware

# Distributed response cache
middleware = ResponseCachingMiddleware(
    cache_storage=RedisStore(host="redis.example.com", port=6379)
)
With authentication:
from key_value.aio.stores.redis import RedisStore

cache_store = RedisStore(
    host="redis.example.com",
    port=6379,
    password="your-redis-password"
)
For OAuth token storage:
import os
from fastmcp.server.auth.providers.github import GitHubProvider
from key_value.aio.stores.redis import RedisStore

auth = GitHubProvider(
    client_id=os.environ["GITHUB_CLIENT_ID"],
    client_secret=os.environ["GITHUB_CLIENT_SECRET"],
    base_url="https://your-server.com",
    jwt_signing_key=os.environ["JWT_SIGNING_KEY"],
    token_encryption_key=os.environ["TOKEN_ENCRYPTION_KEY"],
    client_storage=RedisStore(host="redis.example.com", port=6379)
)
Characteristics:
  • ✅ Distributed and highly available
  • ✅ Fast in-memory performance
  • ✅ Works across multiple server instances
  • ✅ Built-in TTL support
  • ❌ Requires Redis infrastructure
  • ❌ Network latency vs local storage

Other Backends from py-key-value-aio

The py-key-value-aio library includes additional implementations for various storage systems:
  • DynamoDB - AWS distributed database
  • MongoDB - NoSQL document store
  • Elasticsearch - Distributed search and analytics
  • Memcached - Distributed memory caching
  • RocksDB - Embedded high-performance key-value store
  • Valkey - Redis-compatible server
For configuration details on these backends, consult the py-key-value-aio documentation.

Use Cases in FastMCP

Server-Side OAuth Token Storage

The OAuth Proxy and OAuth auth providers use storage for persisting OAuth client registrations and encrypted upstream tokens. By default, registrations are stored in memory:
# In-memory storage (default behavior - lost on restart)
from fastmcp.server.auth.providers.github import GitHubProvider

auth = GitHubProvider(
    client_id="your-id",
    client_secret="your-secret",
    base_url="https://your-server.com"
)
For production with token persistence across restarts, configure persistent storage and encryption keys:
import os
from fastmcp.server.auth.providers.github import GitHubProvider
from key_value.aio.stores.redis import RedisStore

auth = GitHubProvider(
    client_id=os.environ["GITHUB_CLIENT_ID"],
    client_secret=os.environ["GITHUB_CLIENT_SECRET"],
    base_url="https://your-server.com",
    # Token encryption and signing keys
    jwt_signing_key=os.environ["JWT_SIGNING_KEY"],
    token_encryption_key=os.environ["TOKEN_ENCRYPTION_KEY"],
    # Persistent distributed storage
    client_storage=RedisStore(host="redis.example.com", port=6379)
)
See OAuth Token Security for complete production setup details.

Response Caching Middleware

The Response Caching Middleware caches tool calls, resource reads, and prompt requests. Storage configuration is passed via the cache_storage parameter:
from fastmcp import FastMCP
from fastmcp.server.middleware.caching import ResponseCachingMiddleware
from key_value.aio.stores.disk import DiskStore

mcp = FastMCP("My Server")

# Cache to disk instead of memory
mcp.add_middleware(ResponseCachingMiddleware(
    cache_storage=DiskStore(directory="cache")
))
For multi-server deployments sharing a Redis instance:
from fastmcp.server.middleware.caching import ResponseCachingMiddleware
from key_value.aio.stores.redis import RedisStore
from key_value.aio.wrappers.prefix_collections import PrefixCollectionsWrapper

base_store = RedisStore(host="redis.example.com")
namespaced_store = PrefixCollectionsWrapper(
    key_value=base_store,
    prefix="my-server"
)

middleware = ResponseCachingMiddleware(cache_storage=namespaced_store)

Client-Side OAuth Token Storage

The FastMCP Client uses storage for persisting OAuth tokens locally. By default, tokens are stored in memory:
from fastmcp.client.auth import OAuthClientProvider
from key_value.aio.stores.disk import DiskStore

# Store tokens on disk for persistence across restarts
token_storage = DiskStore(directory="~/.local/share/fastmcp/tokens")

oauth_provider = OAuthClientProvider(
    mcp_url="https://your-mcp-server.com/mcp/sse",
    token_storage=token_storage
)
This allows clients to reconnect without re-authenticating after restarts.

Choosing a Backend

BackendDevelopmentSingle ServerMulti-ServerCloud Native
Memory✅ Best⚠️ Limited
Disk✅ Good✅ Recommended⚠️
Redis⚠️ Overkill✅ Good✅ Best✅ Best
DynamoDB⚠️✅ Best (AWS)
MongoDB⚠️✅ Good
Decision tree:
  1. Just starting? Use Memory (default) - no configuration needed
  2. Single server, needs persistence? Use Disk
  3. Multiple servers or cloud deployment? Use Redis or DynamoDB
  4. Existing infrastructure? Look for a matching py-key-value-aio backend

More Resources

I