FastMCP Cloud is here! Join the beta.
Handle server-initiated LLM sampling requests.
New in version: 2.0.0
MCP servers can request LLM completions from clients. The client handles these requests through a sampling handler callback.
sampling_handler
function when creating the client:
from fastmcp import Client
from fastmcp.client.sampling import (
SamplingMessage,
SamplingParams,
RequestContext,
)
async def sampling_handler(
messages: list[SamplingMessage],
params: SamplingParams,
context: RequestContext
) -> str:
# Your LLM integration logic here
# Extract text from messages and generate a response
return "Generated response based on the messages"
client = Client(
"my_mcp_server.py",
sampling_handler=sampling_handler,
)
Show attributes
from fastmcp import Client
from fastmcp.client.sampling import SamplingMessage, SamplingParams, RequestContext
async def basic_sampling_handler(
messages: list[SamplingMessage],
params: SamplingParams,
context: RequestContext
) -> str:
# Extract message content
conversation = []
for message in messages:
content = message.content.text if hasattr(message.content, 'text') else str(message.content)
conversation.append(f"{message.role}: {content}")
# Use the system prompt if provided
system_prompt = params.systemPrompt or "You are a helpful assistant."
# Here you would integrate with your preferred LLM service
# This is just a placeholder response
return f"Response based on conversation: {' | '.join(conversation)}"
client = Client(
"my_mcp_server.py",
sampling_handler=basic_sampling_handler
)