Tools are the core building blocks that allow your LLM to interact with external systems, execute code, and access data that isn’t in its training data. In FastMCP, tools are Python functions exposed to LLMs through the MCP protocol.

What Are Tools?

Tools in FastMCP transform regular Python functions into capabilities that LLMs can invoke during conversations. When an LLM decides to use a tool:

  1. It sends a request with parameters based on the tool’s schema.
  2. FastMCP validates these parameters against your function’s signature.
  3. Your function executes with the validated inputs.
  4. The result is returned to the LLM, which can use it in its response.

This allows LLMs to perform tasks like querying databases, calling APIs, making calculations, or accessing files—extending their capabilities beyond what’s in their training data.

Defining Tools

The @tool Decorator

Creating a tool is as simple as decorating a Python function with @mcp.tool():

from fastmcp import FastMCP

mcp = FastMCP(name="CalculatorServer")

@mcp.tool()
def add(a: int, b: int) -> int:
    """Adds two integer numbers together."""
    return a + b

When this tool is registered, FastMCP automatically:

  • Uses the function name (add) as the tool name.
  • Uses the function’s docstring (Adds two integer numbers...) as the tool description.
  • Generates an input schema based on the function’s parameters and type annotations.
  • Handles parameter validation and error reporting.

The way you define your Python function dictates how the tool appears and behaves for the LLM client.

Type Annotations

Type annotations are crucial. They:

  1. Inform the LLM about the expected type for each parameter.
  2. Allow FastMCP to validate the data received from the client.
  3. Are used to generate the tool’s input schema for the MCP protocol.

FastMCP supports standard Python type annotations, including those from the typing module and Pydantic.

from typing import Literal, Optional, Union
from pydantic import BaseModel, Field

# Example using various type hints
@mcp.tool()
def process_data(
    data: list[float],                             # List of floats
    operation: Literal["sum", "average", "max"],   # Fixed choices
    precision: int = 2,                            # Optional int with default
    description: str | None = None                 # Optional string (can be None)
) -> dict:
    """Process numerical data with the specified operation."""
    result = 0.0
    if operation == "sum":
        result = sum(data)
    elif operation == "average":
        result = sum(data) / len(data) if data else 0.0
    elif operation == "max":
        result = float(max(data)) if data else 0.0

    return {
        "operation": operation,
        "result": round(result, precision),
        "description": description
    }

Supported Type Annotation Examples:

Type AnnotationExampleDescription
Basic typesint, float, str, boolSimple scalar values
Container typeslist[str], dict[str, int]Collections of items
Optional typesOptional[float], float|NoneParameters that may be null/omitted
Union typesstr | int, Union[str, int]Parameters accepting multiple types
Literal typesLiteral["A", "B"]Parameters with specific allowed values
Pydantic modelsUserDataComplex structured data (see below)

Automatic JSON Parsing: FastMCP intelligently handles arguments. If a client sends a string that looks like valid JSON (e.g., "['a', 'b']") for a parameter hinted as a structured type (like list[str] or a Pydantic model), FastMCP will automatically attempt to parse the JSON string into the expected Python object before validation. This improves robustness when interacting with various clients.

Required vs. Optional Parameters

Parameters in your function signature are considered required unless they have a default value.

@mcp.tool()
def search_products(
    query: str,                # Required - no default value
    max_results: int = 10,     # Optional - has default value
    sort_by: str = "relevance" # Optional - has default value
) -> list[dict]:
    """Search the product catalog."""
    # Implementation...
    print(f"Searching for '{query}', max {max_results}, sorted by {sort_by}")
    return [{"id": 1, "name": "Sample Product"}]

In this example, the LLM must provide a query. If max_results or sort_by are omitted, their default values will be used.

Structured Inputs

For tools requiring complex, nested, or well-validated inputs, use Pydantic models. Define a BaseModel and use it as a type hint for a parameter.

from pydantic import BaseModel, Field
from typing import Optional
from datetime import date

class ReservationRequest(BaseModel):
    guest_name: str = Field(description="Full name of the guest making the reservation.")
    check_in: date
    check_out: date
    room_type: Literal["standard", "deluxe", "suite"] = Field(default="standard", description="Type of room requested.")
    guests: int = Field(gt=0, description="Number of guests (must be positive).")
    special_requests: Optional[str] = Field(default=None, description="Any special requests for the stay.")

@mcp.tool()
def make_reservation(request: ReservationRequest) -> dict:
    """Creates a new hotel reservation based on the provided details."""
    # Pydantic automatically validates the incoming 'request' data
    # against the ReservationRequest model before this function runs.
    print(f"Making reservation for {request.guest_name}...")
    # Implementation...
    return {
        "reservation_id": "R12345",
        "status": "confirmed",
        "guest": request.guest_name,
        "dates": f"{request.check_in} to {request.check_out}"
    }

Using Pydantic models provides:

  • Clear, self-documenting structure for complex inputs.
  • Built-in data validation (e.g., gt=0, date parsing).
  • Automatic generation of detailed JSON schemas for the LLM.
  • Easy handling of optional fields and default values.

Metadata

While FastMCP infers the name and description from your function, you can override these and add tags using arguments to the @mcp.tool decorator:

@mcp.tool(
    name="find_products",           # Custom tool name for the LLM
    description="Search the product catalog with optional category filtering.", # Custom description
    tags={"catalog", "search"}      # Optional tags for organization/filtering
)
def search_products_implementation(query: str, category: str | None = None) -> list[dict]:
    """Internal function description (ignored if description is provided above)."""
    # Implementation...
    print(f"Searching for '{query}' in category '{category}'")
    return [{"id": 2, "name": "Another Product"}]
  • name: Sets the explicit tool name exposed via MCP.
  • description: Provides the description exposed via MCP. If set, the function’s docstring is ignored for this purpose.
  • tags: A set of strings used to categorize the tool. Clients might use tags to filter or group available tools.

Async Tools

FastMCP seamlessly supports both standard (def) and asynchronous (async def) functions as tools.

# Synchronous tool (suitable for CPU-bound or quick tasks)
@mcp.tool()
def calculate_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
    """Calculate the distance between two coordinates."""
    # Implementation...
    return 42.5

# Asynchronous tool (ideal for I/O-bound operations)
@mcp.tool()
async def fetch_weather(city: str) -> dict:
    """Retrieve current weather conditions for a city."""
    # Use 'async def' for operations involving network calls, file I/O, etc.
    # This prevents blocking the server while waiting for external operations.
    async with aiohttp.ClientSession() as session:
        async with session.get(f"https://api.example.com/weather/{city}") as response:
            # Check response status before returning
            response.raise_for_status()
            return await response.json()

Use async def when your tool needs to perform operations that might wait for external systems (network requests, database queries, file access) to keep your server responsive.

Return Values

FastMCP automatically converts the value returned by your function into the appropriate MCP content format for the client:

  • str: Sent as TextContent.
  • dict, list, Pydantic BaseModel: Serialized to a JSON string and sent as TextContent.
  • bytes: Base64 encoded and sent as BlobResourceContents (often within an EmbeddedResource).
  • fastmcp.utilities.types.Image: A helper class to easily return image data. Sent as ImageContent.
  • None: Results in an empty response (no content is sent back to the client).
from fastmcp.utilities.types import Image
from PIL import Image as PILImage
import io

@mcp.tool()
def generate_image(width: int, height: int, color: str) -> Image:
    """Generates a solid color image."""
    # Create image using Pillow
    img = PILImage.new("RGB", (width, height), color=color)

    # Save to a bytes buffer
    buffer = io.BytesIO()
    img.save(buffer, format="PNG")
    img_bytes = buffer.getvalue()

    # Return using FastMCP's Image helper
    return Image(data=img_bytes, format="png")

@mcp.tool()
def do_nothing() -> None:
    """This tool performs an action but returns no data."""
    print("Performing a side effect...")
    return None

Error Handling

If your tool encounters an error, simply raise a standard Python exception (ValueError, TypeError, FileNotFoundError, custom exceptions, etc.).

@mcp.tool()
def divide(a: float, b: float) -> float:
    """Divide a by b."""
    if b == 0:
        # Raise a standard exception
        raise ValueError("Division by zero is not allowed.")
    if not isinstance(a, (int, float)) or not isinstance(b, (int, float)):
        raise TypeError("Both arguments must be numbers.")
    return a / b

FastMCP automatically catches exceptions raised within your tool function:

  1. It converts the exception into an MCP error response, typically including the exception type and message.
  2. This error response is sent back to the client/LLM.
  3. The LLM can then inform the user or potentially try the tool again with different arguments.

Using informative exceptions helps the LLM understand failures and react appropriately.

Using Context in Tools

Tools can access MCP features like logging, reading resources, or reporting progress through the Context object. To use it, add a parameter to your tool function with the type hint Context.

from fastmcp import FastMCP, Context

mcp = FastMCP(name="ContextDemo")

@mcp.tool()
async def process_data(data_uri: str, ctx: Context) -> dict:
    """Process data from a resource with progress reporting."""
    await ctx.info(f"Processing data from {data_uri}")
    
    # Read a resource
    resource = await ctx.read_resource(data_uri)
    data = resource[0].content if resource else ""
    
    # Report progress
    await ctx.report_progress(progress=50, total=100)
    
    # Example request to the client's LLM for help
    summary = await ctx.sample(f"Summarize this in 10 words: {data[:200]}")
    
    await ctx.report_progress(progress=100, total=100)
    return {
        "length": len(data),
        "summary": summary.text
    }

The Context object provides access to:

  • Logging: ctx.debug(), ctx.info(), ctx.warning(), ctx.error()
  • Progress Reporting: ctx.report_progress(progress, total)
  • Resource Access: ctx.read_resource(uri)
  • LLM Sampling: ctx.sample(...)
  • Request Information: ctx.request_id, ctx.client_id

For full documentation on the Context object and all its capabilities, see the Context documentation.

Server Behavior

Duplicate Tools

You can control how the FastMCP server behaves if you try to register multiple tools with the same name. This is configured using the on_duplicate_tools argument when creating the FastMCP instance.

from fastmcp import FastMCP

mcp = FastMCP(
    name="StrictServer",
    # Configure behavior for duplicate tool names
    on_duplicate_tools="error"
)

@mcp.tool()
def my_tool(): return "Version 1"

# This will now raise a ValueError because 'my_tool' already exists
# and on_duplicate_tools is set to "error".
# @mcp.tool()
# def my_tool(): return "Version 2"

The duplicate behavior options are:

  • "warn" (default): Logs a warning and the new tool replaces the old one.
  • "error": Raises a ValueError, preventing the duplicate registration.
  • "replace": Silently replaces the existing tool with the new one.
  • "ignore": Keeps the original tool and ignores the new registration attempt.